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Degenerate hypergeometric functions are employed to give an exact solution of 
a nonstationary convective heat-conduction problem for an established laminar 
flow of a viscous incompressible fluid in a plane-parallel layer. 

We assume that the fluid occupies the region Ix I < b, IY[, Izl < = and that the given 
velocity field has only the one component v z = -v 0 (i -x2/b 2) (see [I]). The problem in 
question then amounts to determining the temperature T(x, y, z) from the equation of convec- 
tive heat conduction [2] 
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u n d e r  g i v e n  b o u n d a r y  c o n d i t i o n s  and t h e  i n i t i a l  c o n d i t i o n  

T(x, z, O)= T~, z). (2 )  

If we seek particular solutions of Eq. (i) in the form 

exp {[i~v0 - -  a (~2 + ~2)] t + i~z} ~ (x), 

we then obtain the following equation for the function 

qb"+ (~2__ ,,!~VOab z x2 ) ~ = 0 ,  (3 )  

Assuming that boundary conditions of the first kind are homogeneous, we have, for the func- 
tion ~, 

(+ ~ = o. (4) 

For the solution of the boundary-value problem (3)-(4) with parameter ~ we make the follow- 
ing substitutions: 

" l / ~ 2 x Z = u ,  ~ = e x p ( - - + ) w ( u ) ,  ~ =  ab~ ~i~v---'--L-~ , (5 )  

leading to the equation 

(1)o, (i , )  
u~/ '+  2 u " 4 - - 4 2 / C  w = 0 ,  ( 6 )  

whose general solution may be expressed in terms of degenerate hypergeometric functions [3]: 

, u + B ] / u F  ~ #  2 2 u ~ =  - - ;  F(~ ,  z) (~)~zk w = A F  ~, 2 4 4 ] / ~  ?, = , ( 7 )  
~--0 (~)kk! 

(~)~ = [I ([5 -+- 1 ) . . .  ([~ -[- k - -  1), ([~)o == 1. (8) 

If the initial distribution is an even function of x, it is necessary to put B = 0,* after 
which we can write the characteristic functions of the boundary-value problem (4)-(5) in the 
form 

* In the odd case, A = 0. The general case is handled by decomposing the function f into even and 
odd components. 
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Ore(x, %)=F a , - - ~ ,  u exp - -  , 
, ( 9 )  

where the characteristic values ~m(X) are to be obtained from the equation 

F ~, - ~ , u s  = 0 ,  u b =  - b. ( 1 0 )  
a 

The existence of an infinite set of characteristic values follows from the asymptotic re- 
presentation (~m z m~/b, m + ~), while the discreteness of its spectrum is determined by the 
fact that F is an entire function of its first argument. 

Thus, the formal solution of our problem is given by a double expansion (in a series in- 
volving the characteristic functions ~m and in a Fourier integral with respect to the vari- 
able z) : 

T ---- i exp [i% iz -[- rot) - -  a~2t] d~ ~ Am (~) exp [ - -  a~2m @) t] Cm (x, ~), ( 11 ) 
- - o o  m 

where  Am(X) a r e  f u n c t i o n s  t o  be f o u n d .  

We can  show in  t h e  u s u a l  way t h a t  t h e  o r t h o g o n a l i t y  p r o p e r t y  h o l d s :  
b 

Cp (x, ~,) Cq (x, ~) Ox = O, p ~ q. 
- - b  

Then,  a p p l y i n g  t h e  i n i t i a l  c o n d i t i o n  ( 2 ) ,  we o b t a i n ,  f i n a l l y ,  

2~Nm()~) _ f(x,  z)r ~)exp(--i~z)dxdz,  (12) 
- - o o  

where 
b 

One o f  t h e  p o s s i b l e  a p p r o a c h e s  t o  an a p p r o x i m a t e  a n a l y s i s  o f  t h e  e x a c t  s o l u t i o n  o b t a i n e d  
i s  t o  expand  i t  in  powers  o f  a s m a l l  p a r a m e t e r  

8 = V f g g g 7 .  (14) 

I n  d o i n g  t h i s ,  i t  may be assumed t h a t  i n  f o r m u l a  (11)  i t  i s  s u f f i c i e n t  t o  c a r r y  o u t  t h e  i n -  
t e g r a t i o n  w i t h  r e s p e c t  t o  t h e  v a r i a b l e  X o v e r  t h e  i n t e r v a l  IXbl < ~ - ~ / 2 ,  and t h a t  t h e  c o n d i -  
t i o n  V~-T >> Pe is satisfied. 

We employ this method in connection with the case of homogeneous boundary conditions 
of the second kind (thermally insulated channel walls), in which case Eqs. (4), (i0), and 
(13) are replaced by the following: 

0r  = 0 ,  2 OF F = 0 ,  N ~ = - -  1 r , 

Ox Ou "="8  2 ~  OrtOx J ~=b 

where, as before, we assume that f(-x, z) = f(x, z). 

Using the expansion 

2 = (-- I)~(2~) ~" ~.  ~ (-- 1) ~ 
"~ [2(m@ p)]! am'm*P(~b~)2m' (15) 

p~O rn=O 

in  which  t h e  c o e f f i c i e n t s  amk a r e  known f rom t h e  e q u a t i o n  

~ l -  ~-- "'" ~] 4 = ~ amh~lm' a~176 --~ 1, 
J t n ~ O  

we o b t a i n  t h e  f o l l o w i n g  a p p r o x i m a t e  e x p r e s s i o n s  f o r  t h e  c h a r a c t e r i s t i c  v a l u e s  and c h a r a c -  
t e r i s t i c  functions: 

( I -5 l / sz (16 )  O (~9, m ~> I, 
b ~ m = m . ~ +  t , ~ -  4n2m 2 / m~ ' 
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(1 8)  
= e2 ~2 + 0 (~6) = (b~oo)~ + 0 (89,  

(b~~ ~ 945 

[ (  ~z--1 1 ) E s i n m n ~ i  - q)m = cos n,r~ + 3tn:~ tufa ~ " 

%~ cosm~% ] ~ 
q- 2m~a ~ j - - ~ + O ( e ~ ) ,  m ) l ,  

(17) 

( 1 8 )  

8 3 

q:'o = 1 -6 ~2(~ 2 -  2) -~-q-O(e~). (19) 

The latter expressions make it possible, in particular, to obtain the following expression 
for the temperature averaged over a channel section: 

- - b  - - o o  

G (;9 = 1 b - 4a---~ ] ~ [(x, z )exp( - - i%z)dxdz ,  (20) 
~b --oo 

from which it is evident that the function T satisfies to within quantities of order Pe ~-ii2 
the differential equation 

= 8 0._._~T (a q- ah) 0~__~T q_ v 0T ah ---- - -  pea a. (21 ) 
Ot Oz 2 Oz ' 945 

It is natural to call the quantity a k the convective thermal diffusivity coefficient by ana- 
logy with the convective diffusion coefficient introduced in [4] in connection with an appro- 
ximate consideration of the corresponding diffusion processes. 

We note, in conclusion, that the method we have presented for obtaining exact solutions 
of nonstationary problems of convective heat transfer (and diffusion) can be extended to 
problems with nonhomogeneous boundary conditions (including even problems of the third kind) 
as well as to more involved problems of junction heat exchange (see, for example, [5] in 
which an approximate solution is given of a junction problem for a many-layered semiinfinite 
channel without taking account of axial spreading of heat). 

NOTATION 

x, y, z, coordinates; v 0 = qb2/2~ ' , maximum velocity; q, constant pressure drop per unit 
length; ~', viscosity coefficient; t, time; a, coefficient of thermal diffusivity~ Pe = v0b/a, 
Peclet number; ~ = at/b 2, dimensionless time; $ = x/b, dimensionless coordinate; v = 2/3 v0, 
averaged velocity. 
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